Poisson Structures Compatible with the Cluster Algebra Structure in Grassmannians

نویسندگان

  • M. GEKHTMAN
  • M. SHAPIRO
  • A. STOLIN
  • A. VAINSHTEIN
چکیده

We describe all Poisson brackets compatible with the natural cluster algebra structure in the open Schubert cell of the Grassmannian Gk(n) and show that any such bracket endows Gk(n) with a structure of a Poisson homogeneous space with respect to the natural action of SLn equipped with an R-matrix Poisson-Lie structure. The corresponding R-matrices belong to the simplest class in the Belavin-Drinfeld classification. Moreover, every compatible Poisson structure can be obtained this way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded quantum cluster algebras and an application to quantum Grassmannians

We introduce a framework for Z-gradings on cluster algebras (and their quantum analogues) that are compatible with mutation. To do this, one chooses the degrees of the (quantum) cluster variables in an initial seed subject to a compatibility with the initial exchange matrix, and then one extends this to all cluster variables by mutation. The resulting grading has the property that every (quantu...

متن کامل

Cremmer-Gervais cluster structure on SLn.

We study natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson-Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin-Drinfeld classification of Poisson-Lie structures on G corresponds to a cluster structure in O(G). We have shown before that this conjecture holds for any G in the case ...

متن کامل

On Contact and Symplectic Lie Algeroids

In this paper, we will study compatible triples on Lie algebroids. Using a suitable decomposition for a Lie algebroid, we construct an integrable generalized distribution on the base manifold. As a result, the symplectic form on the Lie algebroid induces a symplectic form on each integral submanifold of the distribution. The induced Poisson structure on the base manifold can be represented by m...

متن کامل

ar X iv : m at h / 02 08 03 3 v 1 [ m at h . Q A ] 5 A ug 2 00 2 CLUSTER ALGEBRAS AND POISSON GEOMETRY

We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of ...

متن کامل

ar X iv : m at h / 02 08 03 3 v 2 [ m at h . Q A ] 2 5 N ov 2 00 3 CLUSTER ALGEBRAS AND POISSON GEOMETRY

We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009